From the Editor-in-Chief

This issue contains five articles that address the following: excellence through quality improvement, the Dodd-Frank Act, reverse logistics, global corporate social responsibility, and ethical U.S. education and practice.

Ekmeckci, in the first article, maintains that in today’s competitive environment excellence depends on effective leadership. He highlights some of the key behavioral dimensions that leaders need to achieve desirable outcomes. Based on data regarding the 51 winners of Malcolm Baldrige National Quality Award from 2000 to 2010, his study shows that leaders can influence individuals or groups to achieve a common goal. The author summarizes the role of leadership in attaining excellence in a table that focuses on six aspects.

In the second article, Gordon addresses reverse logistics (“...the process of moving the product from the point of consumption to the point of origin...”) as a way to improve customers return experience. Returns can tie up a company’s value. He maintains that it pays to apply training and professionalism to reverse logistics and offers useful hints on implementing an effective reverse logistics process.

In the third article, Torres explains the challenges faced in implementing the Dodd-Frank Act in view of its extensive new regulations. The article offers useful suggestions using the Parson’s AGIL model components for social system survival. The author “...uses general arguments from structural functionalism, communicative action, structuration, and related theories to offer an integrative perspective on the myriad levels of action that surround the legislative process....”

In the fourth article, Hackert, Krumwiede, Tokle, and Vokurka advise that effective global corporate social responsibility differs according to the particular culture in which it is undertaken. International cultural differences should be taken into consideration when selecting social responsibility practices. The authors rely on data collected by the Global Manufacturing Research Group, consisting of academic researchers engaged in international manufacturing studies.

Petrick, in the fifth article, addresses the role played by human resource management professionals in hiring people responsible for the ’07 – ’09 financial crisis and recession. He offers seven best practices for what he calls “morally responsible HRM education that includes drawing the best from international labor practices.” These seven practices are summarized in a table that offers each practice and a brief statement of its benefits.

On a different subject, we have received many interesting and excellent papers for the 2013 SAM International Business Conference to be held in Arlington, Virginia on March 21-24, 2013. If you are interested in serving as a paper discussion or session chair, please let me know. The Case Competition will be held on March 22. Campus chapters that wish to participate need to let us know by contacting me at Moustafa. abdelsamad@tamu.edu. For the latest information about the conference and registration, see SAM’s Web site at www.samnational.org.

On a personal note, after 21 years of service as Dean of the College of Business at Texas A&M University- Corpus Christi (TAMUCC), I will step down as Dean and return to teaching finance in fall 2013. Prior to my service at TAMUCC, I served for three years as Dean of the College of Business and Industry at Southeastern Massachusetts University (the name was changed to University of Massachusetts-Dartmouth). This amounts to 24 years of service as a business dean.

The University announcement was quoted as saying that “Dr. Abdelsamad has overseen tremendous growth and achievement in the College of Business. During his tenure as dean, he helped launch an online Master of Business Administration (MBA) program, coordinated the creation of the Coastal Bend Business Innovation Center, and the move into the new Michael and Karen O’Connor building. He also made Texas A&M University- Corpus Christi the home of the Society for Advancement of Management (SAM). Most notably, he led the faculty to achieve and maintain accreditation from the Association to Advance Collegiate Schools of Business (AACSB) for both the business and accounting programs, a feat less than one percent of the world’s business schools have achieved.”

I believe it is time to return to the classroom and work more closely with the students. I have enjoyed serving as Dean of the College of Business here at Texas A&M University- Corpus Christi and appreciate the support I received from the faculty, staff, and the community. I am thankful to the University for allowing me to serve in this position for 21 years and look forward to the change. This action should not affect my SAM activities and I look forward to working more closely with the SAM family and friends.

Best wishes in the new year.

Moustafa H. Abdelsamad
Editor-in-Chief
SAM AM/ and
President and CEO of SAM
Reconfigured to be the Best: Leading Organizations to Excellence Through Quality Improvement

In our highly competitive business environment, achieving and maintaining excellence, especially excellence in quality, is imperative for long-term success. Effective leadership is key in framing excellence as a goal, promoting it as a culture, communicating clearly, and maintaining transparent governance structures. A study based on data from the applications of the 51 winners of the Malcolm Baldrige National Quality Award from 2000 to 2010 showed that leaders must engage actively within four behavioral domains—operational alignment, employee engagement, stakeholder balance, and social involvement— and also manage for balance and integration.

Ozgur Ekmekci

Reverse Logistics Management: Beyond 3.4 Defects per Million

One way to reduce returns of defective products is to focus on quality control in the production supply chain. But returns may occur for other reasons; there will always be some returns. It’s good business to improve the customer’s return experience, i.e., better reverse logistics through a focused reverse logistics department. A literature review suggests four best-practices in reverse logistics: Managing all aspects of the returns process; providing strong leadership; focusing on customers and policies; and recognizing that reverse logistics is not the forward process in reverse. Combining these with double loop learning, i.e., in-depth understanding of the “cause” in cause-and-effect, can help assure a significant improvement in reverse logistics management. Finally, the reverse logistics process should be reviewed annually to keep current with market changes and technology.

Robert Lee Gordon

Dodd-Frank Theoretically Unplugged

Passed in 2010 to fix the causes of the 2007-09 financial crises, the so-called Dodd-Frank Act contains more than 290 new regulations—with more on the way—and will create 13 new agencies. This article dissects the “levels of action” surrounding the legislation and ongoing crafting of regulations using a theoretical framework that includes structural/functionalism, communicative action, and progeny. Much use is made of Parsons’ AGIL model of four critical components for social system survival; adaptation (working through economic dynamics), goals (accomplished through political systems), integration (working through laws, judicial decisions regarding desired/undesired behavior), and latent pattern maintenance (reflected in family, education, culture). These four concepts as applied to the actual legislative tasks illuminate the challenges confronting the full-scale implementation of this massive Act.

David L. Torres

Global Corporate Social Responsibility Practices and Cultural Dimensions

Manufacturing companies cannot ignore social responsibility issues, such as the environment, pollution, recycling, waste reduction, and work place health and safety. Differences in global cultural norms mean that socially responsible policies must also differ to be effective in a particular culture. Using data from the Global Manufacturing Research Group, this study examines the extent to which firms make socially responsible investments and how such investments correlate to major cultural dimensions, as defined by Hofstede’s indices: power distance, individualism, masculinity, uncertainty avoidance, and long-term orientation. Results can help guide managerial decision-making around the globe.

Ann M. Hackert, Dennis Krumwiede, Joanne Tokle, and Robert J. Vokurka
Reverse Logistics Management: Beyond 3.4 Defects per Million

Robert Lee Gordon, American Public University

Introduction
Returns of items sold are a fact of any business and the rate of returns becomes the grail of quality. Six Sigma aims for no more than 3.4 defects per million (Slack, et al., 2010). Most organizations are under the impression that if they improve product quality to the level of Six Sigma, returns will always decrease and customer satisfaction will always improve. Many organizations also falsely believe that controlling the quality of the product is the only way to control returns. Nevertheless, review of the literature and different organizations shows that returns continue to happen, even for quality-centric companies.

The working assumption is that when an organization operates consistently at Six Sigma, it should expect three to four returns per million units sold. Yet, most organizations accept that a small portion of distributed goods will be returned for some other reason. The reason for the return is often unclear, and many organizations simply ignore the returns as long as they are not quality related or highly visible to the media (Kempter, 2009). While many organizations focus solely on the quality issues, all of the other issues are ignored. Hence, an organization may have more complex reverse logistics (return) issues without ever realizing it.

To remain competitive, all organizations need to move away from focusing only on quality in the production cycle and to look at quality throughout the entire operation. In addition to this shift in organizational perspective, many organizations need to recognize the importance of the entire sale-repair-return cycle. Too many organizations fail to accept that the process of moving product from the point of origin to the point of consumption (traditional supply chain) is different from the process of moving the product from the point of consumption to the point of origin (reverse logistics).

Traditional supply chains have skilled negotiators, professional managers, and highly specialized individuals to control the flow of materials to an organization (Garrett, 2010). This professionalism will also support operations that manage inbound quality. Organizations have long understood that having a highly trained and professional supply chain group will yield organizational benefits beyond the cost of these professionals. What many organizations are only beginning to realize is that applying the same level of training and professionalism to reverse logistics can yield the same level (if not greater) of benefits.

Current research in the field of reverse logistics has shown that the field is specialized enough that it should be its own separate department headed up by a senior management professional with specialized skills (Kempter, 2009; Stock and Mulki, 2009). Once a manager at this level is responsible, the reverse logistics department can apply the same quality improvement techniques to areas such as returns and repairs, making these areas as effective as quality control is for operations (manufacturing).

The reason for this is simple, according to Galien Vick, Reverse Logistics Association president: “Anytime money is taken from a company’s warranty reserve or service logistics budget that is a reverse logistics operation” (Vick, n.d.). Since there is a budgetary implication, it only follows that there should be a department head trying to limit or mitigate these costs, just as there are heads of the supply chain function and of operations. It might be possible to incorporate
these responsibilities with another department, but warranty and service returns differ from the cost containment used in forward logistics or customer order fulfillment.

Methodology
Current literature will be examined and reviewed to establish the relevant information regarding reverse logistics best practices. Originally 11 elements were considered likely to be found in the literature, but as the current literature was examined, four common best practices emerged for reverse logistics. These four will be posed to various reverse-logistics organizations and organizational experts for their validation as a best practice. These four best practices were then applied to double loop learning.

Double loop learning is well documented in current literature and is a widely accepted concept for quality improvement (Slack, et al., 2010). It will be explained in terms that can be applied to reverse logistics, and the reverse logistics best practices will then be discussed with double loop learning in mind. The result will be to show how double loop learning can assist in achieving a competitive advantage with reverse logistics best practices.

Why Reverse Logistics is Important to an Organization
The reported value of U.S. returns is estimated at $100 billion per year, approximately 4% of the U.S. GDP (Blanchard, 2012; Stock and Mulk, 2009; Li and Olorunniwo, 2008). This statistic alone shows the importance of the management of returns. Further studies have shown that the rate of returns can vary between 5% and 50% (Rogers and Tibben-Lembke, 1998), so even at a modest 5% rate, the level of returns is significant.

If even 5% of a company’s value is tied up in a process that can have serious brand ramifications, this alone should require it to address this significant issue. Given the reduction of margins in the current competitive marketplace, 5% can be the difference between long-term success and short-term failure. If a highly efficient Six Sigma organization can achieve manufacturing errors of 1 error in 3.4 million (0.00034%) but there is a customer return rate of 1 return in 200 (0.05%), the returns quantity is significantly greater than can be accounted by the manufacturing errors alone. Clearly, there is more at work than just quality with regard to returns.

The reason that most organizations are unwilling to invest in a better returns or repairs process is that many feel that returns or repairs cut into the revenue stream. Organizations might ignore the rate of returns because they believe there are often mitigating circumstances. Unfortunately, high rates of returns can indicate problems beyond quality. Additionally, even low return rates can be a problem if returns are poorly handled and cause long-term customer service issues. Often such issues are not reported because some organizations equate all quality issues with returns. A natural response might be to blame all returns on quality issues without looking into the situation further. Furthermore, organizations feel that returns expend organizational energy without any upside, i.e., a return is negative revenue. Another common issue is that most companies know their revenue numbers and manufacturing throughput, but few will track returns.

Organizations that do track returns often use the data only as a negative to sales, so little analysis goes into understanding why the returns occurred in the first place. In fact, returns happen more frequently than organizations want to admit, even when quality is improving. One reason is that the customer may not understand how to use the product (Blanchard, 2012).

Studies in reverse logistics have shown that a portion of products that are returned and tested have no quality problems (Kemper, 2009). These ‘no fault returns’ cost a company money, time, and prestige. They will often outnumber the quantity returned for actual quality issues, yet few organizations try to learn what causes these types of returns (Kemper, 2009).

One notable exception is Hitachi America. Blanchard (2012) reports that Hitachi America reduced service calls to consumers by 33% by implementing a service-call avoidance program. A technical services hotline assisted consumers in walking through and addressing some problems, thereby reducing services calls.

Reverse Logistics Best Practices
The review of the reverse logistics literature was difficult because reverse logistics is only now coming into its own. Historically, supply chain management attempted to address material now known as reverse logistics as a subset of supply chain management. There were early arguments that reverse logistics was simply the reverse of an existing supply chain. This led to some interesting research by supply chain individuals, but it quickly became apparent that reverse logistics encompassed a much larger scope. Research became even more complicated as the nomenclatura-
ture changed from titles such as of supply chain management, reverse supply chain, or returns management to reverse logistics. This created the need to search both current and early work in reverse logistics to get a suitable cross section of material for study.

When originally examining the literature, the goal was to identify items that reverse logistics experts considered important as well as material found in the current literature. The experts consisted of active members of the reverse logistics community, either as heads of reverse logistics organizations or as members of a university staff that was active in reverse logistics. The review of the current literature found the following elements to be pervasive management of all aspects of the returns process, the need for leadership, the need to focus on the customer, and recognition that the reverse process is not the same as the forward process.

- The returns process was the most commonly identified aspect of reverse logistics. This is not surprising since all retail organizations need some manner of returns process. What was found in much of the reverse logistics research was that organizations lacking a solid defined process for their returns had the most room for improvement (Blanchard, 2012). In addition, since organizations did not see the value of the returns function it was often forgotten or treated as a secondary job. Customer ramifications, such as complaints, would eventually surface in other areas of the organization. However, some organizations had a return number, much like a purchase order for supply chain and forward logistics, to better track and identify the return (Gordon, 2011). The consistent use of a tracking number was found to help improve the returns process as it moved through the organization.

- The need for leadership in the reverse logistics process was often identified in the literature. This was defined as requiring a centralized leadership organization to address the cross-departmental nature of a return. For example, a simple return might need to be identified by customer service, then moved to production for repair, after repair it would move to the logistics department, and then finally back to the customer service department. Many reverse logistics scholars believe that a reverse logistics department should be created along with an executive-level director or vice president to ensure that the process is done properly (Hoffman, 2006). When examining the literature, some organizations have moved to outsourcing the entire process to achieve better control. This means that the outsourced company would need leadership to unify all these functions, but since the ordinal hypothesis was that the identified company would solve the problem internally, an outsourced solution fell outside of the hypothesis and was not included as a best practice. Nevertheless, this was an interesting but unexpected finding.

- A focus on customers and policy was identified in all the literature since most articles were looking to improve the process (hence being best practices) and all felt that the customer and policies should be central. Although different authors had different ideas on how to address customers and policies, all felt that improving the returns process should be a priority and hence should be a best practice of any organization (Blanchard, 2012; Hoffman, 2006). What is interesting about this is that many organizations recognize the importance of customer service, and they recognize that returns are part of customer service, but many still did not want to admit that reverse logistics management (or at least returns management) was an important function. This was made clear by the widespread absence of a senior level manager directly responsible for reverse logistics management (or even for returns management). Often the returns function was combined with the role of another functional manager, who would see it as secondary or tertiary.

- Reverse logistics is not the same as forward logistics the research in this area showed that some have tried to define reverse logistics as just the supply chain operating in reverse. This is clearly not the case, and although many books have been written about logistics, few books address the management challenges associated with reverse logistics. Thousands of pages have been written about how organizations can move product and services more efficiently in a forward direction, but few organizations have addressed how material can efficiently be received from consumers, repaired at some facility (not always the manufacturer), and efficiently and effectively returned to consumers.

Despite the similarity in names, the study of reverse logistics is not the same as the study of forward logistics. Different authors use many terms to describe reverse logistics, and many of the definitions were similar, but most were willing to accept that forward and reverse logistics were significantly different. A few authors were unwilling to move from a simplified approach and chose only to examine the logistics aspect of
the process (i.e., the final step where the returned product is sent back to the customer, rather than the entire process). Probably the most interesting and insightful metaphor used to describe reverse logistics comes from David Landau, director of product management at Manhattan Associates. Landau described reverse logistics as triage, because someone must take a first look at the products coming back in and decide instantly on the state of the product and the reason for the return (Ames, 2003). Cutis Greves, president of Genco Retail Services, explained clearly the different mindset between forward and reverse logistics, because with forward logistics shipments to customers are expected and planned, but reverse [returns] are not expected because one does not know what will be returned to the company until it gets there (Ames, 2003).

The table below shows the relative strength of these best practices found in the literature.

<table>
<thead>
<tr>
<th>Best practice found to be highly important</th>
<th>Instances in the reading</th>
<th>Review of experts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage all aspects of the return process</td>
<td>96% (24/25)</td>
<td>100% (5/5)</td>
</tr>
<tr>
<td>Need for leadership</td>
<td>88% (22/25)</td>
<td>100% (5/5)</td>
</tr>
<tr>
<td>Focus on customers and polices</td>
<td>100% (25/25)</td>
<td>100% (5/5)</td>
</tr>
<tr>
<td>Reverse logistics as not the forward process in reverse</td>
<td>92% (23/25)</td>
<td>100% (5/5)</td>
</tr>
</tbody>
</table>

Overall, there was an overwhelming identification of these four best practices. In addition, the reverse logistics process most identified was returns, because every retail organization has returns. (No product is ever 100%, regardless if the company is Six Sigma compliant or not.) The management of all aspects of the returns process and the need for leadership was found to be important in all but a few articles that advocated outsourcing the reverse logistics process. Although one could claim that outsourcing would mean external management of the process, the direction of the research was that the company should have internal management to support the reverse logistics process.

Double Loop Learning

Double loop learning is more in depth than single loop learning, which is basically cause and effect. Double loop learning accepts the cause and effect relationship but questions the foundations of the cause (Slack, et al., 2011). It attempts to reframe the process by challenging some of the underlying assumptions of the process. For an organization, double loop learning can lead to positive changes that continually improve the process. This kind of behavior shall allow reverse logistics to succeed in any organization.

The double loop method of learning can take advantage of the employee’s knowledge and incorporate it into the organization's reverse logistics processes and procedures. This method also can evolve into a streamlined, efficient, and ever-evolving organization that meets the changing demands of reverse logistics. Since reverse logistics contends with geographically dispersed clients, employees, and suppliers, double loop learning should be the methodology of choice to achieve significant improvements in reverse logistics processes.

The practical application of double loop learning to some reverse logistics best practices will also result in an improvement of the overall quality of returns and other reverse logistics processes, which, in turn, can lead to increased brand awareness and customer loyalty.

Applying Reverse Logistics Best Practices and Double Loop Learning to Improve Organizational Competitiveness

With each of the four commonly identified reverse logistics best practices, the question arises of how to deploy the practice effectively in an organization. Most organizations are looking for answers, and if the double loop learning process is already in use, applying it to reverse logistics should be an easy transition.

The best practices conveniently create a four-step approach (Table 2) that can substantially improve any organization’s reverse logistics processes. As with all best practices, an imple-
Table 2. Reverse Logistics Four-Step Improvement Process Applying Double Loop Learning

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Define the reverse logistics process</td>
</tr>
<tr>
<td></td>
<td>The organization must define and continually redefine the reverse logistics</td>
</tr>
<tr>
<td></td>
<td>process as it exists in the organization.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Improving leadership</td>
</tr>
<tr>
<td></td>
<td>The organization must define leadership and then continually redefine the</td>
</tr>
<tr>
<td></td>
<td>role of leadership in reverse logistics.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Improving the returns process</td>
</tr>
<tr>
<td></td>
<td>The leadership must define and then continually redefine service levels in</td>
</tr>
<tr>
<td></td>
<td>the returns process in order to attain the highest levels.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Improving the customer service process</td>
</tr>
<tr>
<td></td>
<td>Customers and leadership must define and then continually redefine customer</td>
</tr>
<tr>
<td></td>
<td>service levels in order to attain the highest levels.</td>
</tr>
</tbody>
</table>

A documentation plan is necessary, otherwise the learning is just academic.

Step 1: Defining the reverse logistics process
The first step of the improvement process is to define the reverse logistics process. The problem is that definitions of the reverse logistics associations are often all-encompassing and not easy to apply to any particular organization. Because of this, each organization must create its own definition. Senior management needs to define what is included, but at a minimum it should encompass the returns process (department), the repair function, after-sales customer service, and logistics processes. Once these and other relevant areas are identified, it becomes far easier to define the necessary processes, policies, and procedures for the department. At that point the organization can move forward to improve them.

To apply double loop learning to this, the organization must revisit and revise the definition of reverse logistics over time. A recommendation of reevaluating the department and areas annually should be sufficient to keep the department focused upon the necessary areas. Two key areas are responsiveness to customers and staying current with the necessary technology. Keep in mind that organizations change over time, and new products may require additional after-sale support, as an example. Therefore, the reverse logistics area must remain flexible.

Developing a process to capture knowledge of how situations were handled in the past is also crucial. Although returns are repetitive but not necessarily on a daily basis, tracking software or some other data repository is essential to support this kind of organizational learning. In turn, this knowledge can support a process of continual refinement of policies and procedures to optimize customer satisfaction. Note that this is only possible with sufficient resources and management support; trying to implement something like this without leadership will certainly result in failure.

Step 2: Improving leadership
The first step will be to define and select the department head of reverse logistics and identify the stakeholders. Academics are predicting that many organizations will move to an executive-level department head in coming years (Vick, nd). The research supports this movement, which would mean not only creating a new position, but also an evolving position. Thus it would be logical to apply double loop learning to the evolution of the leadership of the department.

Since the department will be new, leadership will need to continually address the changes of the market, the organization, and of customers. For example, if a new product requires additional after-sales customer support, the reverse logistics department will need to reconfigure the department to meet these needs (Blanchard, 2012). This will be critically important because department changes may involve additional costs. Without sufficient documentation regarding the changes in customer needs, securing the right resources may be difficult.

To apply double loop learning, leadership must enlist help from the information technology (IT) group to develop and maintain the systems that support reverse logistics. By creating a data repository of customer contacts, returns, tracking, and any other data related to reverse logistics, the organization will be able...
to review the data for patterns. Patterns can lead to improvements, because the ability to examine the entire process will identify any deficiencies. No longer will returns be “one off” or a “quality issue.” The true source of problems should come out because data will be available for every step in the process.

Step 3: Improving the returns process
As discussed, organizations recognize the importance of the returns process, but some just do not want to deal with it. Because of this, the returns process can benefit from double loop learning. Most organizations have poor benchmarks, such as an expectation of two to four weeks to process a return. This is unacceptable for a customer who has already purchased the product. Consider this: in many cases, a person can purchase an item online, have it shipped out overnight and have the item tomorrow. So, why would an organization punish this customer by making them wait two to four weeks for a replacement or refund? This is a common disconnect.

The goal is to be great. Meeting an average industry return timetable is unacceptable, because when looking to becoming great, the benchmark should be against the sales process. If the organization can achieve the same level of speed with returns that it can with sales, then the organization is getting it right. Customers will begin to expect this level of service from all organizations, and some have moved in this direction. Consider the impact if an organization could advertise that returns are corrected that same day or the next day. What would happen to customer loyalty for that kind of guarantee?

Some organizations achieve great customer satisfaction with returns, and if so, why not every organization? An example is Nordstrom’s, often considered the gold standard for customer returns. If an organization is not the Nordstrom’s of their industry, it needs to do better (Gordon, 2010). Blaming demanding customers is not acceptable. Long-term success comes from being great at treating people better than they expected to be treated.

Step 4: Improving customer service
Some organizations already have a mechanism to improve customer service processes. If so, then the reverse logistics group should include that process. Where customer contact is considered important, an organization may already use double loop learning. Regardless, the question should always be asked: What can make the customer service process better so that service in the reverse logistics department can make customers happy?

The reverse logistics department must continually gather comments and feedback from customers in order to improve the overall experience. New technology can gather information immediately from customers who contact customer service. These surveys often ask if the situation was resolved, if the representative was polite, but few ask about the entire reverse logistics experience. Few surveys ask what led to the customer’s service call, and this is key in double loop learning. Change can only be accomplished with information that is identified.

Blanchard (2012) reports that Hitachi America was able to reduce the number of service calls to customer locations by implementing a system where customer service representatives reached out to customers with issues before the service tech was sent out. This made a great difference for the company, but Blanchard (2012) did not show where Hitachi was applying double loop learning. Hitachi America was applying single loop learning (cause and effect) because no one researched what the problem was. If a customer service person was able to reduce service calls to client sites by 33%, it sounds like there were issues with the product’s instructions. Solid and clear instructions eliminate or reduce the need to get help to get equipment to work properly. Someone should have been looking to improve the instructions. For those that disagree, consider the change in documentation in instructions for setting up a home computer. In the past, full instructions books were included with a new computer. Now, almost all information is digital, available on the Web, or common software is pre-loaded to avoid installation issues.

Ultimately, what is important is that individual customer contact points be improved so that the overall experience is exceptional. The result should also be that if the department is not getting continual positive feedback from customers, then the department can do more. A reverse logistics department should be able to enhance or improve the customer experience by exposing issues that happen throughout all the processes rather than just examining one or perhaps a portion of one.

Conclusion
Much work remains to be done with reverse logistics. As organizations become more complex, greater demands placed upon them will increase
Organizations will need to treat customers at a level never before achieved by the average company. They will need to provide exceptional reverse logistics support in order to stand out. In addition, to start the four-step process, more organizations need to create an executive-level or director-level position to head a reverse logistics department. The new leadership can better organize and implement the necessary processes and procedures. Leadership must take the first steps toward improving the overall brand experience to achieve long-term customer loyalty and competitive advantage over other companies.

Currently a full-time faculty member in reverse logistics, Dr. Gordon has an extensive business background in supply chain management and human resources. He has published numerous articles on supply chain management, strategic value-added purchasing and vendor relations, human resources, conflict in the virtual organization, and complexity, as well as three books on topics in these fields.

REFERENCES

Blanchard, D. (2012, February). Going in reverse can be the right direction: Returns management can offer significant cost savings for manufacturers. Industry Week. Available at http://www.industryweek.com/articles/going_in_reverse_can_be_the_right_direction_26594.aspx?SectionId=2

Vienna, VA: Management Concepts.

(continued on page 59)

(References continued from page 11)

(References continued from page 18)

World Trade WT 100 (23,7), pp. 16-21.

(References continued from page 32)