EXAMPLE A: Sample Research Paper

The paragraphs in this example represent the Introduction, Research Design, Findings, and Conclusions sections of a thesis or capstone paper. In an actual research paper, these sections would contain more than a single paragraph. Because the focus is on abstract writing, in-text citations, footnotes, and endnote indicators are not included.

INTRODUCTION

According to the Centers for Disease Control and Prevention, about 5,500 adult drivers age 65 and older die each year in traffic crashes. That's double the number of teenagers killed annually in vehicle crashes. Edmunds.com, a major online resource for car shopping and automotive information, suggests that many stereotypes about the failings of older drivers are beginning to fade. About 33 million licensed drivers in the U.S. are over age 65, they state, up more than 20 percent from a decade ago. Because of this rise in numbers, the statistics may be overblown. But concerns about older driver safety persist. One area of concern is age-related cognitive impairment. Studies have shown that some cognitive abilities begin to deteriorate as a person ages. The correlation between age-related cognitive decline and driver ability requires investigation. This paper reports on a study which evaluated the effect of age and cognitive function in relation to driving errors and self-regulation decisions.

RESEARCH DESIGN

The sample consisted of 178 drivers, aged 65 to 88 years. The study participants lived independently and were medically assessed as being in general good health. Subjects were assessed on the cognitive abilities that decline with normal aging (visual attention, processing speed, and reaction time) and their decision to self-regulate their driving. The FOV Assessment (Field of View Assessment), a computer based visual test screening instrument for older drivers,
was employed. Subjects also completed an on-road driving test. Generalized linear models were used to estimate the associations of cognitive factors with specific driving errors and number of errors in self-directed and instructor navigated conditions. A self-report questionnaire and follow up interview were used to assess driver decision to regulate their driving activities.

FINDINGS

The study showed that all driver error types increased with chronological age. Reaction time, however, was not associated with driving errors in multivariate analyses. A cognitive factor measuring speeded selective attention and switching was uniquely associated with the most errors types. The FOV predicted blind-spot errors and errors on dual-lane roadways. After adjusting for subject age, education, and gender, the cognitive factors explained 7% of variance in the total number of errors in the instructor-navigated condition and 4% of variance in the self-navigated condition. Older drivers were 80% more likely to self regulate than drivers 70 years of age and younger. Self-regulation choices included not driving at night, not driving on freeways, not driving during inclement weather, and asking a friend or family member to drive when the person was tired or ill.

CONCLUSIONS

Among older drivers, errors increase with age and are associated with speeded selective attention, particularly when that requires attending to the stimuli in the periphery of the visual field, task switching, and visual discrimination. These abilities should be the target of cognitive training. Drivers older than 70 years of age were more conscious of the need to self regulate their driving. The issue of self-regulation should be addressed with older drivers before driving errors create serious safety hazards for themselves, their passengers, and other drivers.
EXAMPLE B
The key sentences are highlighted in green.

INTRODUCTION

According to the Centers for Disease Control and Prevention, about 5,500 adult drivers age 65 and older die each year in traffic crashes. That's double the number of teenagers killed annually in vehicle crashes. Edmunds.com, a major online resource for car shopping and automotive information, suggests that many stereotypes about the failings of older drivers are beginning to fade. About 33 million licensed drivers in the U.S. are over age 65, they state, up more than 20 percent from a decade ago. Because of this rise in numbers, the statistics may be overblown. But concerns about older driver safety persist. One area of concern is age-related cognitive impairment. Studies have shown that some cognitive abilities begin to deteriorate as a person ages. The correlation between age-related cognitive decline and driver ability requires investigation. This paper reports on a study which evaluated the effect of age and cognitive function in relation to driving errors and self-regulation decisions.

RESEARCH DESIGN

The sample consisted of 178 drivers, aged 65 to 88 years. The study participants lived independently and were medically assessed as being in general good health. Subjects were assessed on the cognitive abilities that decline with normal aging (visual attention, processing speed, and reaction time) and their decision to self-regulate their driving. The FOV Assessment (Field of View Assessment), a computer based visual test screening instrument for older drivers, was employed. Subjects also completed an on-road driving test. Generalized linear models were used to estimate the associations of cognitive factors with specific driving errors and number of errors in self-directed and instructor navigated conditions. A self-report questionnaire and follow up interview were used to assess driver decision to regulate their driving activities.

FINDINGS

The study showed that all driver error types increased with chronological age. Reaction time, however, was not associated with driving errors in multivariate analyses. A cognitive factor measuring speeded selective attention and switching was uniquely associated with the most errors types. The FOV predicted blind-spot errors and errors on dual-lane roadways. After adjusting for subject age, education, and gender, the cognitive factors explained 7% of variance in the total number of errors in the instructor-navigated condition and 4% of variance in the self-navigated condition. Older drivers were 80% more likely to self regulate than drivers 70 years of age and younger. Self-regulation choices included not driving at night, not driving on
freeways, not driving during inclement weather, and asking a friend or family member to drive when the person was tired or ill.

CONCLUSIONS

Among older drivers, errors increase with age and are associated with speeded selective attention, particularly when that requires attending to the stimuli in the periphery of the visual field, task switching, and visual discrimination. These abilities should be the target of cognitive training. Drivers older than 70 years of age were more conscious of the need to self regulate their driving. The issue of self-regulation should be addressed with older drivers before driving errors create serious safety hazards for themselves, their passengers, and other drivers.

INTRODUCTION

According to the Centers for Disease Control and Prevention, about 5,500 adult drivers age 65 and older die each year in traffic crashes. But concerns about older driver safety persist. One area of concern is age-related cognitive impairment. Studies have shown that some cognitive abilities begin to deteriorate as a person ages. The correlation between age-related cognitive decline and driver ability requires investigation. This paper reports on a study which evaluated the effect of age and cognitive function in relation to driving errors and self-regulation decisions.

RESEARCH DESIGN

The sample consisted of 178 drivers, aged 65 to 88 years. The study participants lived independently and were medically assessed as being in general good health. The *FOV Assessment (Field of View Assessment)*, a computer based visual test screening instrument for older drivers, was employed. Subjects also completed an on-road driving test. A self-report questionnaire and follow up interview were used to assess driver decision to regulate their driving activities.

FINDINGS

The study showed that all driver error types increased with chronological age. Reaction time, however, was not associated with driving errors in multivariate analyses. A cognitive factor measuring speeded selective attention and switching was uniquely associated with the most errors types. The *FOV* predicted blind-spot errors and errors on dual-lane roadways. After adjusting for subject age, education, and gender, the cognitive factors explained 7% of variance in the total number of errors in the instructor-navigated condition and 4% of variance in the self-navigated condition. Older drivers were 80% more likely to self regulate than drivers 70 years of age and younger. Self-regulation choices included not driving at night, not driving on freeways, not driving during inclement weather, and asking a friend or family member to drive when the person was tired or ill.

CONCLUSIONS

Among older drivers, errors increase with age and are associated with speeded selective attention, particularly when that requires attending to the stimuli in the periphery of the visual field, task switching, and visual discrimination. Drivers older than 70 years of age were more conscious of the need to self regulate their driving.
EXAMPLE D
First Draft of the Abstract

[This is the completed text of Draft 1 of the abstract using the key sentences highlighted in RED from the previous example. This is the abstract text we will be revising in Video 3 of this instructional module.]

This paper on older driver safety reports on a study was older driver safety. One area of concern is age-related cognitive impairment. Studies have shown that some cognitive abilities begin to deteriorate as a person ages. The correlation between age-related cognitive decline and driver ability requires investigation. This paper reports on a study which evaluated the effect of age and cognitive function in relation to driving errors and self-regulation decisions. The sample consisted of 178 drivers, aged 65 to 88 years. The research method(s) I used in my study was/were the FOV Assessment (Field of View Assessment), a computer based visual test screening instrument for older drivers, was employed. Subjects also completed an on-road driving test. A self-report questionnaire and follow up interview were used to assess driver decision to regulate their driving activities. The findings of the study are as follows. The study showed that all driver error types increased with chronological age. The FOV predicted blind-spot errors and errors on dual-lane roadways. The cognitive factors explained 7% of variance in the total number of errors in the instructor-navigated condition and 4% of variance in the self-navigated condition. Older drivers were 80% more likely to self regulate than drivers 70 years of age and younger. Self-regulation choices included not driving at night, not driving on freeways, not driving during inclement weather, and asking a friend or family member to drive when the person was tired or ill. The results of the study indicated (or suggested) the following. Among older drivers, errors increase with age and are associated with speeded selective attention, particularly when that requires attending to the stimuli in the periphery of the visual field, task switching, and visual discrimination. Drivers older than 70 years of age were more conscious of the need to self regulate their driving. [Word count: 300]